

Leak detection technologies for the oil and gas industry

Chris Neidre Alex Robertson July 17, 2015

Our company

Leek's most recent milestones

- Created as a division of Seacoast Science in 2013
- Spun-off February 2015
- Privately held CA C-Corp
- Focus on sensors for bulk oil and gas leak detection
- Finalist for Connect's Most Innovative New Product award

Why we created the new technology

Pulled by the market

- Enrbidge Energy & Syscor Controls
- Hydrocarbon leaks often go undetected
- A real time leak detector is needed
- No viable suppliers
- Can we identify a suitable technology?
- Driving factor for Leek was massive market opportunity

Previous state of the art sensors

Polymer Absorptive Sensors (PAS)

- Polymer coated resistor
- Original patent in 1959
- Fuel leak detection
- Extensive EPA evaluation in 1980s
- Incorporated into safety systems
- Couldn't detect methane, fell out of favor
- Replaced by other technologies

Technology Limitations

Adsistor Technologies

- Original developer
- Ultra low volume "production"
- Not positioned to evolve their technology

Alternative Technologies

- Sensitive to water
- Not reversible or must be cleaned after detection
- Can only see liquid (not vapor)
- Expensive (>\$5k)
- Short lifespan (<2 years)

Concept of Operation

Chemiresistor-based Polymer Absorption Sensor

- Resistive placed platform (versus capacitive or others)
- Specialty coated polymer expands
- Conductive particles spread apart
- Resistance increases

We are polymer experts!

We've been developing polymers since 2003

- Licensed from Naval Research Laboratories
- Proprietary in-house polymers

Adapting to a resistor

- Select and modify polymers for specific chemical classes (Secret Sauce)
- Completely reversible in vapor
- Immune to water

Our innovation increased performance

Hours

Our Polymer Absorptive Sensors (PAS)

Unique Capabilities

- Ultra low power
- Insusceptible to water
- Long term survivability
- PPM Sensitivity (low %LEL)
- False alarm immunity
- Low cost >\$1

Limitations

- Nonreversible when submerged in hydrocarbon liquids
- Low sensitivity at low hydrocarbon concentrations
- Difficulty detecting C1-C3

How do we test our sensors?

Development of a PA Sensor Evaluation Method

- Pipeline Research Council project PL-1H
- Evaluates sensitivity and durability of PAS after manufacturing
- Sets performance requirements that must be met

Method includes

- Sensor to sensor reproducibility
- Temperature dependence
- Sensitivity to target chemicals & select interferents
- Sensor saturation and fatigue

Our first product

Monitoring Above Ground Storage Tanks

- Floating roof seals fail and vapors escape
- Rooftop detection system deployed by Syscor
- Monitor explosive vapors as %LEL
- CSA Intrinsic Safety Certification
- Kinder Morgan field trials

Monitoring oil on water

Point detection of oil leaks and spills

- Market pull specifically for oil on water detection
- Low cost alternative to existing infrastructure technologies
- Real time detection of hydrocarbons
- Works on water and in ice
- Proof of principle prototype completed by Xylem
- Current field trials by Enbridge Energy

Monitoring oil pipelines

Pipelines leak a lot of oil

- Bury a sensing cable along pipelines
- Real time leak detection
- Includes vibration, humidity and temperature sensors
- Phase 2 of PRCI Program PL-1H
- Sensors tuned for crude oil
- Sensitive to >1bbl crude
- Validated in TransCanada's ELDER test

Methane detection

Another market that we're seeing pull from

- Detecting leaks from methane pipelines
- Methane produced by organic decomposition
- Tends to be ubiquitous and is a source of false alarms
- Small leaks typically associated with elevated LEL
- Low concentration sensitivity (<5% LEL) not always critical
- Market dominated by catalytic and IR detectors
- Modified our polymers and it works!

We can see methane

Heptane Methane 9000 Chemiresistor 1s3 Chemiresistor 1s3 Sensor Response (Ohm) Sensor Response (Ohm) Hours Hours

LeekTechnologies

Next steps for methane

Critical Milestones

- Continue sensor development
- Cable vs. Node?
- Modify evaluation methods
- Perform accelerated aging studies
- Identify commercialization partners within the industry

Thanks for listening!

Chris Neidre CEO, Leek Technologies 858-922-2912 <u>cneidre@me.com</u>

Alex Robertson Partner, Leek Technologies 619-518-0925 <u>alex@ecossebg.com</u>

